skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Zhanbo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Driver State Monitoring (DSM) is paramount for improving driving safety for both drivers of ego-vehicles and their surrounding road users, increasing public trust, and supporting the transition to autonomous driving. This paper introduces a Transformer-based classifier for DSM using an in-vehicle camera capturing raw Bayer images. Compared to traditional RGB images, we opt for the original Bayer data, further employing a Transformer-based classification algorithm. Experimental results prove that the accuracy of the Bayer Color-filled type images is only 0.61% lower than that of RGB images. Additionally, the performance of Bayer data is closely comparable to RGB images for DSM purposes. However, utilizing Bayer data can offer potential advantages, including reduced camera costs, lower energy consumption, and shortened Image Signal Processing (ISP) time. These benefits will enhance the efficacy of DSM systems and promote their widespread adoption. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025
  2. The emergence of vehicle-to-everything (V2X) technology offers new insights into intersection management. This, however, has also presented new challenges, such as the need to understand and model the interactions of traffic participants, including their competition and cooperation behaviors. Game theory has been widely adopted to study rationally selfish or cooperative behaviors during interactions and has been applied to advanced intersection management. In this paper, we review the application of game theory to intersection management and sort out relevant studies under various levels of intelligence and connectivity. First, the problem of urban intersection management and its challenges are briefly introduced. The basic elements of game theory specifically for intersection applications are then summarized. Next, we present the game-theoretic models and solutions that have been applied to intersection management. Finally, the limitations and potential opportunities for subsequent studies within the game-theoretic application to intersection management are discussed. 
    more » « less